

Rexnord Omega® HDY

Precision. Power. Performance.

You want a trusted name when it comes to providing engineered power transmission products that improve productivity and efficiency. Rexnord provides superior products for your industrial applications world wide. We work closely with you to reduce maintenance costs, eliminate redundant inventories and prevent equipment downtime.

Applications include:

pumps

conveyors

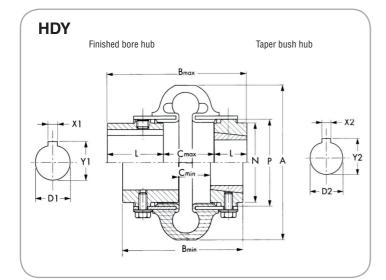
industrial fans

Rexnord Omega® HDY

The Rexnord Omega is a unique general purpose elastomer coupling with split element design providing easy assembly and replace-in-place service. Available in close coupled and spacer designs. These unique designs permits faster installation and reduced inveotories by providing multiple distance between shaft ends using the same elements and hubs. Omega HDY coupling torque ratings is 25% higher and torsional stiffness is 40% higher than on standard Omega design.

Ex Certified II 2GD c T5

Rexnord Omega® HDY


Features

- Split in half element
- Interchangeable hubs
- HDY design

Benefits

- Ease of installation
- Visual inspection
- **D** Low inventory requirements
- Smaller coupling size
- Higher torque ratings

Torque Demands Driven Machine	Typical Application for Electric Motor or Turbine Driven Equipment	Typical Service Factor			
	Constant torque such as centrifugal pumps blowers and compressors	1.0			
	Continuous duty with some torque variations including plastic extruders and forced draft fans	1.5			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Light shock loads from metal extruders, cooling towers and log haulers	2.0			
$\bigcirc\!$	Moderate shock loading as expected from a car dumper, stone crusher, vibrating screen	2.5			
$\overline{\text{MMMM}}$	Heavy shock load with some negative torques from reciprocating pumps, compressors, reversing turnout tables	3.0			
$\overline{\mathbb{A}^{\mathbb{A}}}}}}}}}}$	Frequent torque reversals such as reciprocating compressors with frequent torque reversals which do not necessarily include reverse rotations	Consult Rexnord Engineering			

	Tnom	n-max	D1 max	Taper**	D2 max	Α	B1min	B1max	B2min	B2max	C1min	C1max	C2min	C2max	L	L	N	N	P	J	m
Size	Nm	n-min	mm	bush	mm		FRB	FRB	HTL	HTL	FRB	FRB	HTL	HTL	FRB	HTL	FRB	HTL		kgm	kg
E2HDY	28	7 500	28	-	-	89	84	94	-	-	36	46	-	-	24	-	38	-	47	0,00032	0,5
E3HDY	51	7 500	34	1008	25	102	84	122	87	87	8	46	43	43	38	22	50	50	59	0,00032	1,0
E4HDY	78	7 500	42	1008	25	116	84	122	87	87	8	46	43	43	38	22	57	57	66	0,0012	1,3
E5HDY	131	7 500	48	1210	32	137	97	147	103	103	8	59	52	52	44	25	70	71	80	0,0032	2,3
E10HDY	205	7 500	55	1610	42	162	97	147	103	103	8	59	52	52	44	25	84	84	93	0,0064	3,4
E20HDY	325	6 600	60	1610	42	184	113	169	114	114	9	65	64	64	52	25	95	89	114	0,016	6,8
E30HDY	515	5 800	75	2012	50	210	125	185	128	128	7	68	64	64	59	32	114	102	138	0,034	10
E40HDY	778	5 000	85	2517	65	241	135	201	150	150	9	75	60	60	63	45	146	117	168	0,08	17
E50HDY	1 080	4 200	90	2517	65	279	151	231	165	165	11	91	76	76	70	45	152	124	207	0,158	24
E60HDY	1 765	3 800	105	3020	75	318	173	261	186	186	9	97	84	84	82	51	165	146	222	0,266	34
E70HDY	3 113	3 600	120	3535	90	356	189	279	238	238	19	109	60	60	85	89	175	165	235	0,366	39
E80HDY	5 575	2 000	155	4040	100	406	245	377	299	299	17	149	95	95	114	102	240	194	286	1,054	77
E100HDY	12 000	1 900	171	4545	110	533	324	375	267	267	44	95	38	38	140	114	260	260	359	2,19	95
E120HDY	24 000	1 800	190	5050	125	635	362	429	305	305	57	127	51	51	152	127	299	299	448	2,93	163
E140HDY	48 000	1 500	229	7060	177	762	432	483	381	381	76	127	76	76	178	152	381	381	530	4	280

 $^{^{\}star}$ Weight and inertia with maximum bore and key way \bullet Dimension C(1) finished bore hubs - C(2) with Taper Bush hubs

Avenida Adalberto Simão Nader, 425 Loja 9 - Mata da Praia - Vitória-ES CEP: 29066-370, Fone: (27) 3315-1100 E-mail: accmvitoria@accmvitoria.com.br

Site: www.accmvitoria.com.br

 $^{^{\}star\star} \text{ Please consult Rexnord or Taper bush provider to ensure Taper bush Tnom is greater than coupling Tnom}$